Exercise 4

In Exercises 1-4, show that the given function $u(x)$ is a solution of the corresponding Fredholm integral equation:

$$
u(x)=x+(1-x) e^{x}+\int_{0}^{1} x^{2} e^{t(x-1)} u(t) d t, u(x)=e^{x}
$$

Solution

Substitute the function in question on both sides of the integral equation.

$$
\begin{aligned}
e^{x} & \stackrel{?}{=} x+(1-x) e^{x}+\int_{0}^{1} x^{2} e^{t(x-1)} e^{t} d t \\
& \stackrel{?}{=} x+e^{x}-x e^{x}+\int_{0}^{1} x^{2} e^{x t-t} e^{t} d t
\end{aligned}
$$

Subtract e^{x} from both sides.

$$
0 \stackrel{?}{=} x-x e^{x}+\int_{0}^{1} x^{2} e^{x t} e^{-t} e^{t} d t
$$

x^{2} doesn't depend on t, so it can be brought in front of the integral.

$$
\begin{aligned}
0 & \stackrel{?}{=} x-x e^{x}+x^{2} \int_{0}^{1} e^{x t} d t \\
& \stackrel{?}{=} x-x e^{x}+\left.x^{2} \cdot \frac{1}{x} e^{x t}\right|_{0} ^{1} \\
& \stackrel{?}{=} x-x e^{x}+x\left(e^{x}-e^{0}\right) \\
& \stackrel{?}{=} x-x e^{x x}+x e^{x}-x e^{0} \\
& \stackrel{?}{=} x-x \\
& =0
\end{aligned}
$$

Therefore,

$$
u(x)=e^{x}
$$

is a solution of the Fredholm integral equation.

